
Approximations for transport parameters and self-averaging properties for point-like injections

in heterogeneous media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 2549

(http://iopscience.iop.org/0305-4470/37/7/003)

Download details:

IP Address: 171.66.16.65

The article was downloaded on 02/06/2010 at 19:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 2549–2571 PII: S0305-4470(04)66963-0

Approximations for transport parameters and
self-averaging properties for point-like injections in
heterogeneous media

Jens Eberhard

Interdisciplinary Center for Scientific Computing, University of Heidelberg,
Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

E-mail: jens.eberhard@iwr.uni-heidelberg.de

Received 31 July 2003
Published 4 February 2004
Online at stacks.iop.org/JPhysA/37/2549 (DOI: 10.1088/0305-4470/37/7/003)

Abstract
We focus on transport parameters in heterogeneous media with a flow modelled
by an ensemble of periodic and Gaussian random fields. The parameters are
determined by ensemble averages. We study to what extent these averages
represent the behaviour in a single realization. We calculate the centre-of-
mass velocity and the dispersion coefficient using approximations based on a
perturbative expansion for the transport equation, and on the iterative solution
of the Langevin equation. Compared with simulations, the perturbation theory
reproduces the numerical results only poorly, whereas the iterative solution
yields good results. Using these approximations, we investigate the self-
averaging properties. The ensemble average of the velocity characterizes the
behaviour of a realization for large times in both ensembles. The dispersion
coefficient is not self-averaging in the ensemble of periodic fields. For the
Gaussian ensemble the asymptotic dispersion coefficient is self-averaging. For
finite times, however, the fluctuations are so large that the average does not
represent the behaviour in a single realization.

PACS numbers: 05.10.Gg, 47.55.Mh

1. Introduction

During the last 20 years, stochastic models have become an essential tool for analysing the
transport of dissolved pollutants in saturated aquifers. Because of strong spatial variations
in the hydraulic conductivity and various other chemical and physical system parameters,
the effective large-scale transport properties are different from those found in laboratory-scale
experiments. Transport is governed by the heterogeneities of the medium, but due to the lack of
knowledge of the detailed local structure in a realistic set-up, the predictive abilities are limited.
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In the stochastic approach these heterogeneities are modelled as random, time-independent
fields with given statistical properties. The characteristic large-scale behaviour follows from
appropriately defined averages over the ensemble of all possible aquifer realizations. The
approach has been used to analyse the increase of the dispersion coefficients of a dissolved
pollutant in a saturated aquifer owing to local variations of the conductivity, see [14, 13, 5].
A comprehensive overview of the subject can be found in [4, 12]. To show how predictive
the stochastic approach for a given realistic set-up is, one has to analyse when the averaged
quantities predict the quantities of a single realization. Therefore, it is important to study
the self-averaging properties of the transport parameters. This is possible by comparing the
transport parameters for a single realization with the ensemble mean, or by the mean square
sample-to-sample fluctuations.

In a given aquifer the solute cloud is represented by the concentration field c(x, t). Its
centre-of-mass velocity uj (t) and the dispersion coefficient Dij (t) are given by

uj (t) = d

dt
m

(1)
j (t) Dij (t) = 1

2

d

dt

(
m

(2)
ij (t) − m

(1)
i (t)m

(1)
j (t)

)
(1)

where m
(1)
j (t) = ∫

ddxxj c(x, t) and m
(2)
ij (t) = ∫

ddxxixj c(x, t) are the first two moments
of the normalized spatial concentration distribution in d dimensions. For the given aquifer,
the observables depend implicitly on the spatial distribution of the heterogeneities. In the
stochastic model the medium corresponds to one particular realization of a spatial random
process, and the large-scale transport parameters are derived from the ensemble averages.
They represent statistic properties of the aquifer ensemble, and therefore, seem to be of
limited predictive value with respect to the properties of a single realization. However, for
appropriately chosen quantities the fluctuations from realization to realization should become
small as soon as the plume has sampled a sufficiently large representative part of the medium.
The transport parameters found in different realizations then fluctuate only weakly around the
ensemble averages. So, in this case these averages indeed represent ‘effective’ large-scale
parameters characteristic for the single aquifer realization.

Due to (1), the solute is characterized by an effective centre-of-mass velocity ueff
j (t) =

uj (t) and effective dispersion coefficient Deff
ij (t) = Dij (t) where the overbar denotes the

ensemble average. In the case of an ensemble of a Gaussian random field, the effective
transport parameters are known by a perturbation theory analysis [8]. What is still lacking is
an analysis of the corresponding sample-to-sample fluctuations as done in [2] for the case of
stratified media. The latter is crucial for the reliability of the model.

We investigate the self-averaging properties of the transport parameters by the vehicle of
an ensemble of randomly periodic fields. The advantage of such an ensemble is that we can
explicitly formulate the local structure of a single realization. Thus, the transport parameters
can be derived for a single realization which is done at second order in the flow fluctuations.
By this the self-averaging properties are accessible for the periodic ensemble by comparing
the values for single realizations with the ensemble mean and by the mean square sample-
to-sample fluctuations. As we compare only with the effective transport parameters for the
Gaussian ensemble at second order, we do not consider higher orders. Moreover, the statistical
properties of the ensemble of periodic fields tend to the properties of the Gaussian random field
in the limit of infinite numbers of modes. Hence, we can study the self-averaging properties
of the transport parameters by passing to the ensemble of the Gaussian random field for which
the direct study by the sample-to-sample fluctuations would be too difficult.

To obtain the transport parameters for a single realization of the periodic ensemble, we
present two alternatives: the perturbation theory approach and an approach using a Langevin
equation. The effective transport parameters using the perturbative expansion are in good
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agreement with numerical simulations, see e.g. [7]. However, use of the perturbation theory
for computing the observables for a single realization of the periodic ensemble fails. This
will be demonstrated for the case of vanishing diffusion. We bypass this failure using the
equivalent description by the Langevin equation and deriving the transport parameters for a
single realization by that.

The transport equation and Langevin equation are introduced in section 2, and the
perturbation theory approach is summarized in section 3. By iterating the Langevin equation
as in section 4, we introduce the new approach to describe the transport behaviour which
seems to be a valuable tool. By this we are capable of studying the self-averaging properties
of the transport parameters which is done in sections 5 and 6.

2. The model

2.1. Transport equation

The time evolution of a solute in a heterogeneous porous medium is given by an advection–
dispersion equation (see, e.g. [4, 13])

∂

∂t
c(x, t) + ∇ · (u(x)c(x, t)) − ∇D0∇c(x, t) = ρ(x)δ(t) (2)

where c(x, t) is the spatial concentration of the mobile solute. Because of spatial fluctuations
in the permeability of the medium, the Darcy velocity u(x) varies locally. As a consequence of
the incompressibility of the fluid, it fulfils ∇ · u(x) = 0. The tensor D0 is the local dispersion
tensor which includes all the dispersion effects due to fluctuations on microscopic scales. Its
general structure is discussed in [19]. As experiments have shown, equation (2) provides a
satisfactory description of the mixing process, see [12], and due to the theoretical work in
[20] the mixing in miscible flow leads to a flux-induced dispersion which is analogous to
Fick’s law and results in (2) with a spatially fluctuating D0 depending on the flow. However,
the consideration of this dependence only yields negligible contributions to the transport
parameters, see [13, 6]. In the following, we assume the local dispersion tensor to be constant
and of diagonal form, D0,ij = D0δij . This kind of model has been successfully used for solute
transport in porous media, see [12, 8].

The right-hand side of the transport equation represents the initial condition for an
instantaneous injection at t = 0. At injection time the total initial concentration is given
by c(x, t = 0) = ρ(x). For the case of a normalized point-like injection, it reduces to a delta
function, ρ(x) = δ(x). We solely consider transport for a three-dimensional flow field with a
point-like injection.

In the stochastic approach the spatially inhomogeneous distribution u(x) is identified with
one single realization of a spatial stochastic process defined by the ensemble of all possible
realizations. We assume this process to be statistically translation invariant in space which
implies that the ensemble average u(x) does not depend on the spatial position x. We split the
fluctuating field into its mean value and the random fluctuations:

u(x) = u0 − w(x). (3)

The mean u0 = u(x) is deterministic and is assumed to be in the 1-direction: u0 = u0e1. The
random fluctuations wi(x) have zero mean. We presume that they fulfil a Gaussian correlation
function wi(x)wj (x′), which reads in Fourier space:

w̃i(k)w̃j (k′) = q0u
2
0(2π)

3d
2 δd(k + k′)pi(k)pj (k)

d∏
n=1

ln exp

(
−k2

nl
2
n

2

)
. (4)
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The Fourier transformed is defined by g̃(k) = ∫∞
−∞ ddx eik·xg(x) and g(x) = ∫

k e−ik·xg̃(k),
where we use

∫
k · · · ≡ (2π)−d

∫
ddk · · · as a shorthand notation. The parameter q0 in (4)

quantifies the disorder strength, and l0 denotes the (isotropic) correlation length of the field.
The functions pi(k) are projectors which ensure the incompressibility of the flow fluid. In
a d-dimensional system (d � 2), they are given by pi(k) = δ1i − k1ki

k2 , i = 1, . . . , d, see
[13, 6]. For the Gaussian random field, all higher correlation functions can be decomposed
into products of the given two-point function.

In addition to the ensemble of a Gaussian random field, we consider an ensemble of
randomly periodic media which is constructed by a superposition of N cosine modes using
randomly chosen parameters. Therefore, the fluctuations wi(x) of u(x) are chosen to be, see
[17, 9],

wi(x) = u0

√
2q0

N

N∑
j=1

pi(q(j)) cos(q(j) · x + α(j)). (5)

The Fourier transformation leads to

w̃i(k) = u0

√
2q0

N

(2π)d

2

N∑
j=1

pi(q(j))
{
eiα(j)

δd(k + q(j)) + e−iα(j)

δd(k − q(j))
}
. (6)

Choosing the probability density functions of the parameters appropriately, we can ensure
that the ensemble of periodic media has the same statistical properties as the ensemble of the
Gaussian field. For this purpose the components of the wave vectors q(j) are independent and
chosen to be of a normal distribution for j = 1, . . . , N , with zero mean and variance l−2

0 . The
phases α(j) are equally distributed in the interval [0, 2π ]. Thus, the normalized distributions
Pq and Pα are given by

Pq(q(j)) = (2π)−d/2ld0 e− 1
2 q(j)2

l2
0 Pα(α(j)) =

{
(2π)−1 for α(j) ∈ [0, 2π ]
0 otherwise.

According to (5), each set of parameters {q(j), α(j), N} := (q(1), . . . , q(N), α(1), . . . , α(N)) for
fixed N corresponds to a single realization of the flow field. The ensemble average is defined
by

f ({q(j), α(j), N}) = (2π)−N

∫ 2π

0
dα(1) · · ·

∫ 2π

0
dα(N)

(
ld0

(2π)d/2

)N

×
∫

ddq(1) · · ·
∫

ddq(N) e− 1
2 q(1)2

l2
0−···− 1

2 q(N)2
l2
0 f ({q(j), α(j), N}). (7)

For the fluctuations w(x), equation (5), one finds w(x) = 0 and w̃i(k)w̃j (k′) given by (4). So,
averages over the ensemble which take into account the correlation upto the order of O(q0) do
not depend on the number of modes N. As shown in [11], higher-order correlation functions
exactly show the properties of the Gaussian random field for N → ∞. This proves that
the results given by averaging over the ensemble of periodic fields tend to the results of the
ensemble of the Gaussian random field in the limit N → ∞, and both kinds of ensembles
have the same statistical properties.

This link between both ensembles is important for studying the self-averaging properties
of the transport parameters. For the ensemble of randomly periodic fields this can be easily
done using the known local structure of the realizations. Then, by increasing the number
of modes we can pass to the ensemble of a Gaussian field and investigate the self-averaging
properties.
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2.2. The Langevin equation

Equivalent to the transport equation is the formulation of transport by the motion of the
particles of the solute cloud, which is given by a Langevin equation, see [16]. The transport of
a passive tracer particle by a d-dimensional flow field u(x) is then modelled by the Langevin
equation

d

dt
x(t) = u(x(t)) + ξ(t) (8)

where x(t) denotes the position vector of the particle and ξ(t) is a Gaussian white noise
which generates the local diffusion process. It has zero mean 〈ξi(t)〉 = 0, i = 1, . . . , d,
and a correlation function 〈ξi(t)ξj (t

′)〉 = 2Dij δ(t − t ′), where 〈·〉 stands for the average
over the white noise ensemble. This model can be applied to understand the dispersion of
conservative transport in porous media as done e.g. in [2, 9]. However, as shown in [3, 18]
results based on this model are often valid only in the long-time limit and do not correctly
reproduce the transversal dispersion coefficients which are luckily not the focus here. If the
transport is described by the Langevin equation, the moments are given by the solution of
(8) averaging the trajectory xi(t) over all realizations of the ensemble of the white noise,
i.e. m

(1)
i (t) = 〈xi(t)〉 and m

(2)
ij (t) = 〈xi(t)xj (t)〉. The Gaussian white noise ξj (t) is given

by a functional distribution P[ξj (t)] ∝ e−(4Djj )
−1

∫ t

0 dt ′ξ 2
j (t ′). The average of f (ξ(t)) over the

ensemble of the noise is defined by

〈f (ξ(t))〉 =
∫

f (ξ(t))

d∏
j=1

D[ξj ]P[ξj (t)] (9)

with the measure D[ξj ]. In the case of D0 = 0 the noise ξ(t) vanishes in the Langevin
equation.

Note that two types of averages are involved when calculating the effective transport
parameters by the Langevin equation: the average over the white noise which generates the
local diffusion process, indicated by the brackets, and the average over the disorder ensemble,
indicated by the overbar. The order in which these averages are performed is crucial, as
discussed e.g. in [2].

2.3. Numerical simulation

For comparison with the theoretical quantities, we compute the centre-of-mass velocity and the
dispersion coefficient by numerical simulations. We consider the realizations of the randomly
periodic fields and discretize the Langevin equation (8) for a particle tracking simulation.
Therefore, we apply an extended Runge–Kutta solver which is described in detail in
[10, 7]. The algorithm solves the Langevin equation for one realization of the white noise.
To obtain the first two moments of the concentration for a single realization of the randomly
periodic field, we average over R realizations of the noise. With the help of the time-
discretized and averaged trajectory and velocity, we obtain the numerical centre-of-mass
velocity and dispersion coefficient for a given periodic realization. Due to the noise of the
numerical dispersion coefficient for small numbers R, we smooth the numerical result of the
dispersion coefficient of a single realization for further computations. As shown in [11], by
a moving average the curve of Dij (t) is not changed but the noise is efficiently reduced. As
the simulations using a large number of realizations of the white noise are very costly, we
compute the dispersion coefficient with 103 � R � 104 and smooth the result in this way. For
all numerical simulations we fix u0 = 1m/d, l0 = 1m, and τu := l0/u0 = 1d.
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3. Transport parameters from the perturbative expansion

We summarize the perturbation theory approach for the transport equation and its results for
the transport parameters. This approach was successfully applied for deriving the effective
transport parameters for the Gaussian random field, see e.g. [1, 8]. Analogously, we apply
this approach to obtain the transport properties for a single realization of the ensemble of the
randomly periodic fields. However, in this case the perturbative expansion fails to produce
good results.

3.1. Perturbation theory approach

We start with the transport equation (2), and the flow field u(x), given by (3) for a single
realization, in the Fourier space:
∂

∂t
c̃(k, t) + (−iu0 · k + kD0k)c̃(k, t) +

∫
k′

ik · w̃(k′)c̃(k − k′, t) = δ(t)ρ̃(k). (10)

ρ̃(k) is the Fourier transform of the source term at t = 0, which is ρ̃(k) = 1 for a point-like
injection. Using the Fourier transformed concentration c̃(k, t), the observables are constructed
by

uj (t) = −i
d

dt
∂kj

(ln c̃(k, t))

∣∣∣∣
k=0

Dij (t) = −1

2

d

dt
∂ki

∂kj
(ln c̃(k, t))

∣∣∣∣
k=0

(11)

where ∂ki
denotes the partial derivative with respect to the k component in the i direction. We

derive a series in the fluctuations w̃ which is supposed to give an approximation for small
q0 
 1. Therefore, we transform equation (10) into

c̃(k, t) = c̃0(k, t) −
∫ ∞

−∞
dt ′c̃0(k, t − t ′)

∫
k′

ik · w̃(k′)c̃(k − k′, t ′)

where c̃0(k, t) fulfils the ‘unperturbed’ problem, i.e. for w̃(k) = 0. It is the solution of the
zeroth order: c̃0(k, t) = �(t) exp(−(D0k2 − iu0 · k)t) =: �(t)g0(k, t). �(t) denotes the
Heaviside step function. Using the explicit expression for w̃, we obtain∫

k
ik · w̃(k′)c̃(k − k′, t ′)=u0

√
q0

2N

N∑
j=1

ik · p(q(j))
(
eiα(j)

c̃(k + q(j), t ′) + e−iα(j)

c̃(k − q(j), t ′)
)

and the concentration c̃(k, t) fulfils for t � 0:

c̃(k, t) = g0(k, t) −
∫ t

0
dt ′g0(k, t − t ′)

N∑
j=1

{Aj(k)c̃(k + q(j), t ′)

+ A∗
j (−k)c̃(k − q(j), t ′)} (12)

where the function Aj(k) is defined by Aj(k) = u0

√
q0

2N
ik · p(q(j)) eiα(j)

. Further, for
j = 1, . . . , N let q(−j) := −q(j) and α(−j) := −α(j). Hence, it is A−j (k) = A∗

j (−k),
with the complex conjugate denoted by ∗, and we can deduce by (12)

c̃(k, t) = g0(k, t) −
∫ t

0
dt ′g0(k, t − t ′)

∑
j

′
Aj(k)c̃(k + q(j), t ′)

where
∑

j
′ := ∑

j=−N ···N with j = 0. Defining the function γ (k, t) which fulfils

c̃(k, t) =: g0(k, t)γ (k, t), and σj (k) = D0q(j)2 − iu0 · q(j) + 2D0k · q(j), we conclude
the equation

γ (k, t) = 1 −
∫ t

0
dt ′

∑
j

′
Aj(k) e−σj (k)t ′γ (k + q(j), t ′).
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The iteration of this equation yields a series expansion for γ (k, t) in Aj(k) or
√

q0:

γ (k, t) = 1 −
∫ t

0
dt ′

∑
j1

′
Aj1(k) e−σj1 (k)t ′

+
∫ t

0
dt ′

∑
j1

′
Aj1(k) e−σj1 (k)t ′

∫ t ′

0
dt ′′

∑
j2

′
Aj2(k + q(j1)) e−σj2 (k+q(j1))t ′′ − · · · .

We truncate this series after the second order in Aj(k) and use the expression for γ (k, t) to
obtain the transport parameters according to equation (11):

ui(t) = u0i − i∂ki
F (k, t)|k=0 Dij (t) = D0δij − 1

2∂ki
∂kj

F (k, t)
∣∣
k=0 (13)

where F(k, t) = ∂t ln γ (k, t) denotes the generating function. It is given at second order by

F(k, t) = −
∑
j1

′
Aj1(k) e−σj1 (k)t −

∑
j1

′
Aj1(k) e−σj1 (k)t

∫ t

0
dt ′

∑
j2

′
Aj2(k) e−σj2 (k)t ′

+
∑
j1

′
Aj1(k) e−σj1 (k)t

∫ t

0
dt ′

∑
j2

′
Aj2(k + q(j1)) e−σj2 (k+q(j1))t ′ .

To calculate the transport parameters it is useful to integrate over time t and expand F(k, t) in
the components of k up to order O(k2). Higher-order terms vanish in ui(t) and Dij (t).

Here and in the next sections, we use the following definitions:

τ (j)
u := (u0 · q(j))−1 = (

u0q
(j)

1

)−1
τ

(j)

D := (
D0q(j)2)−1

τD,max := max
j

(
τ

(j)

D

)
(14)

for j = ±1, . . . ,±N . τD,max denotes the time in which the concentration samples over the
largest length period in the periodic medium in all directions due to the spreading by the local
diffusion.

3.2. Centre-of-mass velocity

According to equation (13) we obtain for the centre-of-mass velocity

ui(t) = u0δ1i − u0

√
q0

2N

∑
j1

′
pi(q(j1)) eiα(j1)

e−σj1 (0)t

+ u0

√
q0

2N

∑
j1

′∑
j2

′′
pi(q(j1))Aj2(q

(j1)) eiα(j1) e−σj1 (0)t

σj2(q(j1))

(
1 − e−σj2 (q(j1))t

)
(15)

where
∑′′

j := ∑′
j for q(j) = 0. It is obvious that for t → ∞ the centre-of-mass velocity

fulfils limt→∞ u(t) = u0, and u(t) approaches u0 for t > τD,max. The ensemble mean for the
randomly periodic media is given by equation (7) as u(t) = u0 in order O(q0). This result
agrees with the result for the centre-of-mass velocity for the ensemble of the Gaussian random
field, see [8]. The limit N → ∞ must not be performed for u(t) since all contributions do not
depend on N in O(q0).

3.3. Dispersion coefficient

The detailed expression for the dispersion coefficient Dij (t) given by (13) can be found in
appendix A.1. For D0 = 0, one finds Dij (t) = 0, as the initial point source remains point-like
all the time. For D0 = 0, we obtain Dij (t = 0) = D0δij , and in the limit t → ∞:

D∞
ij := Dij (t → ∞) = D0δij +

q0u
2
0

N

∑
n

∗
pi(q(n))pj (q(n))

1
/
τ

(n)
D(

τ
(n)
D

)−2
+
(
τ

(n)
u

)−2 (16)
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Figure 1. Comparison between u1(t) from the perturbation theory and the result from the numerical
simulation for the case D0 = 0 and a single realization with N = 3, q0 = 0.1.

where
∑∗

n := ∑N
n=1 for q(n) = 0. In the following, we concentrate on the longitudinal

dispersion coefficient D11(t). The heterogeneity of the media determines the temporal
behaviour of this coefficient in a characteristic form, whereas the contributions for the
transversal dispersion coefficients are of minor importance in the approach to the order O(q0),
see e.g. [8].

The ensemble mean of the longitudinal dispersion coefficient D11(t) agrees with the result
for the ensemble of the Gaussian random field to the order O(q0), see appendix A.2 for D11(t).

3.4. Comparison with numerical simulations

We consider the case D0 = 0 where the transport is governed by the advection. We compare
u1(t) of (15) with the result from the numerical simulation as described in section 2.3. It
turns out that the perturbation theory result fails to predict the numerical simulation. It
exhibits oscillations which are much larger than the numerical result as illustrated for a single
realization in figure 1.

Taking the result from the iteration of the Langevin equation, see next section, the result
for the velocity (15) can be related to the corresponding result u(2)(t) from (20) if it is expanded
in a series in wi . It yields in the order O(q0)

u0δ1i − wi(u0t) + ∇wi(x)|x=u0t ·
∫ t

0
dt ′w(u0t

′)

which is identical with the result (15) for D0 = 0 using w(x). However, the expansion of
wi(u0t − ∫ t

0 dt ′w(u0t
′)) in (20) to the given order is a good approximation provided that wi

does not fluctuate to very near the expansion point. Due to the high fluctuations in the flow
field this condition does not hold in general and the result from the perturbative expansion
fails. It reveals that in the case D0 = 0 the discrepancy between theory and simulation is
caused by the terms of order O(q0). As can be seen in figure 1 the error is immense even
for small N where the flow fluctuations are not too strong. For the averaged quantity u(t),
however, the terms of O(q0) do not contribute. As a result the poor approximation by the
perturbation theory is hidden comparing the ensemble mean with numerical simulations, see
e.g. [11, 7].
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In the case of non-zero diffusion, the agreement between u1(t) and the centre-of-mass
velocity from the simulation is slightly better. This is due to the diffusion effect which acts like
an error damping. However, a systematical error is still inherent in u(t) from the perturbation
theory for t < τD,max. Analogously, the result for D11(t) from the perturbation analysis
fails to predict the dispersion coefficient from the numerical simulation for times t < τD,max,
see [11].

4. Iteration of the Langevin equation

In this section we formulate a new approach for calculating the transport parameters. We make
use of the equivalence of the advection–dispersion equation and the description of the transport
problem by the Langevin equation. We develop by simple iteration approximations for the
centre-of-mass velocity and the dispersion coefficient for the realizations of the periodic
ensemble. The theoretical approximations are again compared with the quantities of the
numerical simulations.

4.1. Iterative solution of the Langevin equation

The Langevin equation for the flow field u(x) = u0 − w(x) is equivalent to

x(t) = u0t −
∫ t

0
dt ′w(x(t ′)) + Xw(t) (17)

where x(t = 0) = 0 und Xw(t) := ∫ t

0 dt ′ξ(t ′) for a realization of the white noise ξ(t).
In the case of a homogeneous velocity field, i.e. w(x) = 0, the solution is given by
x(0)(t) = u0t + Xw(t). An iteration of equation (17) yields an approximation for the solution
of the Langevin equation, whereby the solution x(0)(t) is substituted as an approximation for
x(t ′). Thus, the approximative trajectory x(t) is given due to one iteration step by

x(1)(t) = u0t + Xw(t) −
∫ t

0
dt ′w(u0t

′ + Xw(t ′)). (18)

Analogously, a two-fold iteration of (17) yields

x(2)(t) = u0t + Xw(t) −
∫ t

0
dt ′w

(
u0t

′ + Xw(t ′) −
∫ t ′

0
dt ′′w(u0t

′′ + Xw(t ′′))

)
. (19)

x(1)(t) and x(2)(t) can be understood as an approximation of the solution of the Langevin
equation (8) for a single realization of the white noise. They are used to obtain the transport
parameters for a realization of the ensemble of periodic fields. For the case of D0 = 0 the
transport parameters are solely determined by the advection. We derive an approximation for
this case by (19) which agrees with the numerical simulations in contrast to the result from
the perturbation theory. Similar approximations are then derived for the case D0 = 0.

4.2. Parameters for vanishing diffusion

For vanishing diffusion, the terms of the white noise vanish in the expressions for x(1)(t)

and x(2)(t), i.e. Xw(t) = 0. We denote the trajectory for D0 = 0 by 〈x(t)〉0. Using (18)
respectively (19) the trajectory is given by

〈x(1)(t)〉0 = u0t −
∫ t

0
dt ′w(u0t

′) 〈x(2)(t)〉0 = u0t −
∫ t

0
dt ′w

(
u0t

′ −
∫ t ′

0
dt ′′w(u0t

′′)

)
.
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We substitute the fluctuations w(x) from equation (5) and perform the time integration to
obtain

〈x(1)(t)〉0 = u0t − u0

√
2q0

N

N∑
j=1

p(q(j))(q(j) · u0)
−1(sin(q(j)u0t + α(j)) − sin α(j)).

Analogously, the approximation 〈x(2)(t)〉0 is given by 〈x(2)(t)〉0 = u0t − ∫ t

0 dt ′w(〈x(1)(t ′)〉0),
where the time integration cannot be performed analytically. Differentiating the given
approximations with respect to time, we obtain the centre-of-mass velocity. As the point
injection does not spread for D0 = 0 the centre-of-mass velocity is the velocity of the
injection. The first iteration 〈x(1)(t)〉0 yields

u(1)(t) = u0 − u0

√
2q0

N

N∑
j=1

p(q(j)) cos
(
t
/
τ (j)
u + α(j)

)

with time scales τ
(j)
u given by (14). u(1)(t) is the flow velocity at the location x = u0t , which

is a simple approximation for the centre-of-mass velocity due to the fluctuations of the flow
field. The second iteration of the Langevin equation yields for the centre-of-mass velocity

u(2)(t) = u0 − w


u0t − u0

√
2q0

N

N∑
j=1

p(q(j))τ (j)
u

(
sin

(
t
/
τ (j)
u + α(j)

) − sin α(j)
) . (20)

The result u(2)(t) approximates the velocity better than u(1)(t) as it incorporates the impact
of the flow fluctuations on the trajectory of the particle. Figure 2 depicts the quantities
u

(1)
1 (t) and u

(2)
1 (t) for a single realization in comparison with the result of the numerical

simulation where we consider only the component of the velocity in the direction of the drift
(1-direction). u

(1)
1 (t) compared to the result from the simulation shows that the initial

agreement between both quantities becomes less for growing time owing to the simple
approximation of the particles’ location. Thereas, u

(2)
1 (t) indicates a good agreement for

large times, see figure 2(b).
The time-averaged square deviation between the approximation uapp(t) and the simulation

usim(t) for M time steps η := (M�t)−1 ∑M
m=1

√
(uapp(tm) − usim(tm))2 and tm = m�t , yields

for u
(1)
1 (t) and u

(2)
1 (t) : η(1) = 0.187u0 and η(2) = 0.117u0 (�t = τu,M = 200).

We conclude that in the case D0 = 0 and small q0 iterating the Langevin equation yields
good approximations for the centre-of-mass velocity in contrast to the perturbation theory
analysis.

The analogous expression for the dispersion coefficient is due to (1) given as Dij (t) ≡ 0
for D0 = 0. So, the point injection remains point-like for all times t.

4.3. Parameters for D0 = 0

To derive approximations in the case D0 = 0 we apply only the first iterative solution of the
Langevin equation. In this case, the ensemble average for the white noise can be performed
analytically. The approximation for a realization of the noise reads

x(1)(t) = u0t + Xw(t) −
∫ t

0
dt ′

∫
k

e−ik·(u0t
′+Xw(t ′))w̃(k). (21)



Transport parameters and self-averaging in heterogeneous media 2559

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200

t /τu

u 1
/u

0

u1
(1)

Simulation

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200

t/τu

u 1
/u

0

u1
(2)

Simulation

(a)

(b)

Figure 2. u
(1)
1 (t) (a) and u

(2)
1 (t) (b) in comparison with u1(t) from the numerical simulation for a

single realization with N = 10 and q0 = 0.1.

4.3.1. Centre-of-mass velocity. According to (21) the noise averaged trajectory is given by

〈x(1)(t)〉 = u0t −
∫ t

0
dt ′

∫
k

w̃(k) e−ik·u0t
′ 〈
e−ik·∫ t ′

0 dt ′′ξ(t ′′)〉
as 〈Xw(t)〉 = 0. The expression

〈
e−ik

∫ t ′
0 dt ′′ξ(t ′′)

〉
is given by a functional integral according

to (9). As shown in appendix C, the following equality holds for Dij = D0δij:
〈
e−ik·∫ t

0 dt ′ξ(t ′)
〉 =

exp(−D0k2t). This leads to

〈x(1)(t)〉 = u0t −
∫ t

0
dt ′

∫
k

e−ik·u0t
′
e−D0k2t ′w̃(k).

The k-integration and the time integration can be performed using the explicit expression for
w̃(k) of equation (6), and the centre-of-mass velocity in a single realization of the periodic
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ensemble is given by

u(t) = u0 − u0

√
2q0

N

N∑
j=1

p(q(j)) e−t/τ
(j)

D cos
(
t
/
τ (j)
u + α(j)

)
which yields limt→∞ u(t) = u0. The ensemble average for the periodic fields also produces
u(t) = u0. Therefore, u(t) tends to u0 for t � τD,max because of the enlargement of the plume
by diffusion which results in the limit t → ∞ in an equivalence of volume and ensemble
averaging. The result given by the ensemble mean agrees with the result for the ensemble of
a Gaussian random field, see e.g. [8]. The transition N → ∞ must not be performed for the
same reason as for the result of the perturbation theory. Furthermore, the result for u(t) and
u(t → ∞) is valid for all realizations of the ensemble of periodic media since it is independent
of {q(j), α(j), N}.

In figure 3(a) the centre-of-mass velocity u1(t) is plotted in comparison to the result of
the numerical simulation for one realization of the periodic ensemble. It shows that both
quantities are in good agreement for times t 
 τD,max and t > τD,max. This can be understood
since the approximation for small t is given by the result for D0 = 0. Further, for large time
scales the asymptotic value is approached by u1(t). For times between these regimes, the
approximative result is not the best since the first iterative solution of the Langevin equation
does not account for the flow fluctuations. To account for them one would have to consider
the second iterative solution. Unfortunately, for the latter the integrations for the white noise
cannot be performed analytically.

4.3.2. Dispersion coefficient. Analogously, we get an approximation for the dispersion
coefficient by the first iterative solution. Its longitudinal component results (with the aid of
x(1)(t), equation (21), and the definition for D11(t)) in

D11(t) = D0 +
1

2

d

dt

〈(∫ t

0
dt ′w1(u0t

′ + Xw(t ′))
)2
〉

− d

dt

〈
Xw1(t)

∫ t

0
dt ′w1(u0t

′ + Xw(t ′))
〉
− 1

2

d

dt

(∫ t

0
dt ′〈w1(u0t

′ + Xw(t ′))〉
)2

.

In order to perform the average over the ensemble of the noise analytically, we make use of
the Fourier transform for w1(x). Using Xw(t) = ∫ t

0 dt ′ξ(t ′), we obtain

D11(t) = D0 +
∫ t

0
dt ′

∫
k

∫
k′

w̃1(k)w̃1(k′) e−iu0·(kt+k′t ′)〈e−ik·∫ t

0 dt ′′ξ(t ′′)−ik′ ·∫ t ′
0 dt ′′ξ(t ′′)〉

− d

dt

∫ t

0
dt ′

∫ t

0
dt ′′

∫
k
w̃1(k) e−iu0·kt ′ 〈ξ1(t

′′) e−ik·∫ t ′
0 dt ′′′ξ(t ′′′)〉

−
∫ t

0
dt ′

∫
k

∫
k′

w̃1(k)w̃1(k′) e−iu0·(kt+k′t ′)〈e−ik·∫ t

0 dt ′′ξ(t ′′)〉〈e−ik′ ·∫ t ′
0 dt ′′ξ(t ′′)〉. (22)

The integrations in D11(t) can be performed, as shown in appendix C, and is as follows:

D11(t) = D0 +
∫ t

0
dt ′

∫
k

∫
k′

w̃1(k)w̃1(k′) e−D0(k2t+k′2t ′+2k·k′t ′) e−iu0·(kt+k′t ′)

+ 2iD0t

∫
k
w̃1(k)k1 e−D0k2t−iu0·kt

−
∫ t

0
dt ′

∫
k

∫
k′

w̃1(k)w̃1(k′) e−D0(k2t+k′2t ′) e−iu0·(kt+k′t ′).
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Figure 3. Transport parameters from the iterative solution of the Langevin equation: (a) u1(t)

and the numerical result for the centre-of-mass velocity for one realization and (b) D11(t) and
D∞

11 compared to the smoothed result for D11(t) from the numerical simulation. The parameters
of the single realization are: N = 10, q0 = 0.1,D0 = 0.01m2/d, τD,max/τu = 552, and for the
numerical simulation: R = 10 000.

The k- and k′-integrations can be performed using w̃1(k) of equation (6), and the time integral
can be also calculated. The full expression for D11(t) can be found in appendix B.1.

For D0 = 0,D11(t) vanishes, and for t → ∞ the expression of the perturbation theory
for D∞

11 holds, see equation (16). D11(t) approaches D∞
11 for time scales t � τD,max. So, the

behaviour of the dispersion coefficient is determined for finite times as well as in the limit
t → ∞ by the parameters {q(j), α(j), N}. For N < ∞ D11(t) depends on the structure of
the realization of the flow field. Nevertheless, the ensemble average for D11(t) in the order
O(q0) yields the same result D11(t) as for the ensemble of the Gaussian random field, see
appendix B.2 and [8]. Again, the transition N → ∞ can be neglected since D11(t) is
independent of N.
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The comparison of D11(t) and D∞
11 given by the iterative solution of the Langevin equation

with the result of numerical simulations shows that they agree well. Due to the finite number
R of realizations of the noise, the simulated quantities are noisy for t > τD,max, and we apply
the moving averaging for smoothing, as described in section 2. Figure 3(b) displays D11(t)

for a single realization and the corresponding quantity of the numerical simulation. Unlike
the result of the perturbation theory, D11(t) agrees with the simulation for times t < τD,max.

In the following we only consider the approximations given by the iteration of the Langevin
equation for the transport parameters.

5. Self-averaging property of the velocity

We investigate the self-averaging property of the centre-of-mass velocity, that is, to what
extent the ensemble average is representative of the velocity found in a single realization.
Therefore, we derive the temporal behaviour of the sample-to-sample fluctuations of ui(t) by
the approximation from the Langevin equation, and compare it with numerical simulations.
The asymptotic value is given by limt→∞ u(t) = u0. It does not depend on the number of
modes nor on the given realization and is identical to the ensemble mean. This indicates that
u(t) is self-averaging in the limit t → ∞. It holds for the ensemble of randomly periodic
media as well as for the ensemble of the Gaussian random field since the results do not depend
on N.

The sample-to-sample fluctuations of u1(t) are given by

(δu1(t))
2 := (u1(t) − u1(t))2 = 2q0u

2
0

N(2π)N

∫ 2π

0
dα(1) · · ·

∫ 2π

0
dα(N) l3N

0

(2π)
3N
2

∫
d3q(1) · · ·

×
∫

d3q(N) e− l20
2 (q(1)2

+···+q(N)2
)


 N∑

j=1

p1(q(j)) e−D0q(j)2
t cos

(
u0q

(j)

1 t + α(j)
)

2

.

Performing the integrations for the phases α(j) yields

(δu1(t))
2 = q0u

2
0l

3N
0

N(2π)
3N
2

∫
d3q(1) · · ·

∫
d3q(N) e− l20

2

(
q(1)2

+···+q(N)2
) N∑

j=1

p2
1(q

(j)) e−2D0q(j)2
t

= q0u
2
0

l3
0

(2π)
3
2

∫
d3q e− l20

2 q2
e−2D0q2tp2

1(q)

which can be easily calculated. Analogously, the sample-to-sample fluctuations can be derived
for the directions i = 2, 3, and the final result is given by

(δui(t))
2 = (ui(t) − ui(t))2 = q0u

2
0Si

15
√

1 + 4t/τD
3 (23)

where the constant Si is Si = 8 for i = 1, Si = 1 for i = 2, 3, and τD := l2
0

/
D0 fixes the

diffusive time scale.
The fluctuations (δui(t))

2 are independent of N and agree with the result derived by
Dentz in [6] with the aid of the perturbation theory for the ensemble of a Gaussian random
field. So, the self-averaging property for the centre-of-mass velocity in both cases is identical.
As (δui(t))

2 tends monotonously to zero for increasing t and D0 = 0, the velocity is self-
averaging for time scales t > τD . For the case D0 = 0, the sample-to-sample fluctuations
remain constant. This is due to the fact that the injection remains point-like and the motion
is governed solely by the advection. In figure 4(a), (δu1(t))

2 is plotted in comparison with
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Figure 4. Comparison of the mean square sample-to-sample fluctuations by the iterative solution

of the Langevin equation with the numerical simulations, τD/τu = 100. (a) (δu1(t))
2/u1(t)

2

given by equation (23) and by the simulation for N = 10. For q0 = 0.01 the numerical average
was performed over 373 realizations and R = 10 000 realizations of the white noise, and for

q0 = 0.1 over 1250 realizations with R = 1000 and (b) (δD11(t))
2/D11(t)

2
given by numerical

averaging of D11(t) over 5000 realizations and given by the simulation over 1550 realizations for
N = 50, q0 = 0.1, R = 5000. The results of the simulations are smoothed by a moving average.

the result from the numerical simulation for q0 = 0.01 and q0 = 0.1. Both quantities agree
very well. As shown in [11], the result of the simulation tends even faster to zero than the
theoretical value for t > τu and higher values of q0.

6. Self-averaging property of the dispersion coefficient

In this section we analyse the self-averaging properties of the longitudinal dispersion coefficient
given by the approximation which comes from the Langevin equation. We study the
sample-to-sample fluctuations of D11(t) while the number of modes N tends to infinity. In the
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limit N → ∞ we obtain the self-averaging property of the ensemble of the Gaussian random
field.

In lowest order perturbation theory the mean square sample-to-sample fluctuations of
D11(t) were already derived in [6] for the case of the Gaussian random field:

(D11(t) − D11(t))2 = q0u
2
0l

2
0

32

35

(t/τD)2

√
1 + 4t/τD

5
.

Compared to numerical simulations, this result underestimates the sample-to-sample
fluctuations. To get a more precise result by the perturbation theory approach, one would
have to take into account higher-order contribution which is very laborious. For this reason
the expression for D11(t) given by the Langevin equation is very useful as it incorporates
higher-order contributions.

In contrast to the centre-of-mass velocity, the dispersion coefficient D11(t) depends on
the given aquifer realization for t → ∞ and for finite N, see equation (16) for D∞

11 . Since
D11(t) is independent on N, it is clear that D11(t) is not self-averaging in the limit t → ∞ for
finite N.

6.1. Sample-to-sample fluctuations of D∞
11

For the calculation of (δD∞
11)

2 = (D∞
11 − D∞

11)
2 in the case of finite N, we have to regularize

the integration to avoid divergent contributions in the expression for

(δD∞
11)

2 =
∫ ∞

−∞
dα(1)Pα(α(1)) · · ·

∫ ∞

−∞
dα(N)Pα(α(N))

×
∫

d3q(1)Pq(q(1)) · · ·
∫

d3q(N)Pq(q(N))(D∞
11 − D∞

11)
2 (24)

for small wave vectors q. We restrict the integration over the components q
(j)

1 by introducing
a cut-off parameter L and substitute Pq(q(j)) by a regularized distribution P̃ q(q(j)):

Pq(q) → P̃ q(q) := N (L/l0) e− 1
2 l2

0 q2

(
1 − �

(
l2
0

L2
− q2

1

q2

))
.

The normalization factor N (L/l0) is chosen so that
∫

d3qP̃ q(q) = 1. For L → ∞ we have
then P̃ q(q) → Pq(q). Using the modified distribution P̃ q(q) the integral in (24) remains
finite, and the result for (δD∞

11)
2 reads

(δD∞
11)

2 = G(ε)

N
+

q2
0u2

0l
2
0

4εN

√
π

2
ln(L/l0) (25)

where the function G(ε) does not depend on L and is of order O
(
q2

0

)
, ε := τu/τD = D0/u0l0.

The detailed analysis of (25) can be found in appendix B.3. Due to the contributions of
order O

(
q2

0

)
in the sample-to-sample fluctuations, it is necessary to account for the four-point

correlation function of the flow fluctuations w(x). The result proves that (δD∞
11)

2 vanishes for
N → ∞. Thus, for an ensemble of the Gaussian random field the asymptotic, longitudinal
dispersion coefficient is self-averaging. This does not hold for the ensemble of randomly
periodic media where N is finite.

A similar investigation for (δD11(t))
2 = (D11(t) − D11(t))2 yields for the asymptotic

behaviour for large times t � τD

(δD11(t))
2 ∼ q2

0u2
0l

2
0

4εN

√
π

2
ln(t/τD). (26)
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Figure 5. (δD11(t))
2/D11(t)

2
from numerical averaging of D11(t) from the Langevin equation,

τD/τu = 100. (a) For N = 30 with 10 000 realizations, N = 50 with 5000 realizations, and N =
200 with 1000 realizations, q0 = 0.1. (b) Extrapolated to N → ∞ from the numerically averaged
sample-to-sample fluctuations of D11(t). The extrapolation was performed with the results for
N = 10, 20, 30, 50, 100, 200 and N = 1000.

This result again depends on the number of modes and has a logarithmic divergence in time,
but vanishes for infinite N. However, for the ensemble of the Gaussian random field, i.e. for
N → ∞, the sample-to-sample fluctuations (δD11(t))

2 tend to zero in the limit t → ∞ due
to (25).

6.2. Computation of the sample-to-sample fluctuations

In figure 4(b) the fluctuations (δD11(t))
2/D11(t)

2
from the numerical averaging of D11(t),

equation (B1), are plotted for 5000 realizations of the ensemble of periodic fields with N = 50,
and the result obtained from the numerical simulation, as described in section 2. In the
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numerical simulation we used 1550 realizations with R = 5000 realizations of the white
noise. Furthermore, the dispersion coefficient of each realization was smoothed for computing
(δD11(t))

2. Both quantities agree qualitatively well. The asymptotic increase with time due
to (26) is also noticeable.

In the following we restrict ourselves to the numerical evaluation of (δD11(t))
2 given

by the theoretical approximation of the Langevin equation, equation (B1), and analyse the
sample-to-sample fluctuations for growing N, as the direct computation by the numerical

simulation for comparisons is very costly. A qualitative analysis of (δD11(t))
2/D11(t)

2
given

by the numerical average over D11(t) for increasing N < ∞ exhibits the following: The
sample-to-sample fluctuations have a local minimum in the range t ≈ τD , which does not

change with N. Further, the slow rise in (δD11(t))
2/D11(t)

2
due to the asymptotic value is

shifted to larger time scales for increasing N. So, for the ensemble of periodic fields the
fluctuations first become smaller for t > τD owing to the dispersion but they grow for larger
times due to (26). In this case the dispersion coefficient is not self-averaging at all. Figure 5(a)

shows (δD11(t))
2/D11(t)

2
for different values of N.

To obtain the sample-to-sample fluctuations for the Gaussian random ensemble the
results are extrapolated to N → ∞ using the dependence of 1/N . Figure 5(b) shows

(δD11(t))
2/D11(t)

2
given by the numerical averaging which is extrapolated to N → ∞. The

plot includes the results for q0 = 0.01 and q0 = 0.1. It shows that the dispersion coefficient
D11(t) becomes more and more self-averaging for t > τD for the ensemble of the Gaussian
field which agrees with the above asymptotic result. However, for q0 = 0.1 the fluctuations
are small only for times larger than one order of magnitude of τD . Therefore, the predictive
ability of the stochastic approach is poor for the Gaussian ensemble.

7. Conclusion

The paper investigates the behaviour of transport parameters in heterogeneous media with
a flow modelled by an ensemble of periodic and Gaussian random fields. The transport
parameters are constructed by appropriately defined averages over the ensembles. We calculate
the centre-of-mass velocity and the dispersion coefficient of concentration distributions in
given realizations using approximations based on a perturbative expansion for the transport
equation, and on the iterative solution of the equivalent Langevin equation. We compare the
results with numerical simulations of the transport processes. We find that the perturbation
theory reproduces the numerical results only poorly, whereas the iterative solution yields
good results for the behaviour in a single realization. Using the approximations obtained
from the iteration we study the self-averaging properties. We find that the centre-of-mass
velocity is self-averaging for t → ∞. The ensemble average of the velocity characterizes
the corresponding behaviour of a single realization for sufficiently large times in both kinds
of ensembles. The dispersion coefficient is not self-averaging in the ensemble of periodic
fields. For the Gaussian ensemble, on the other hand, the asymptotic value of the dispersion
coefficient is self-averaging for t → ∞. However, since the self-averaging becomes relevant
first for very large times t > 10τD the predictive ability of the ensemble average for the
dispersion coefficient in a single realization is poor for real systems. Since we discuss merely
point-like injections, most experimental data cannot be evaluated to apply the new results.
However, considering geostatistical data similar to those found in the Borden field site [21],
that is, q0 ≈ 0.1, u0 ≈ 0.086 m/d, τu = 85d and τD ≈ 104d which is comparable to
the transversal and vertical dispersive time scales of the Borden aquifer (for a summary of
the data converted for the Gaussian correlation function, see [8]), we get a self-averaging
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property (δD11(t))
2/D11(t)

2
< 0.1 for times t � 1580τu. This result clearly indicates that

the predictive value of the observable is small for practical time scales in a real system.

Appendix A. Transport parameters from the perturbation theory

Appendix A.1. Dispersion coefficient

The explicit dispersion coefficient for a single realization of the ensemble of periodic media
is given by

D11(t) = D0 + u0

√
2q0

N
D0t

∑
j1

′
q

(j1)

1 p1(q(j1)) e−t/τ
(j1)

D sin
(
t
/
τ (j1)
u + α(j1)

)

+
u2

0q0

2N

∑
j1

′∑
j2

′′ p1(q(j1)) e−t/τ
(j1)

D

Bj2(q(j1))


p1(q(j2))

(
Ej2(q

(j1))Cj1,j2(0) − u0 · q(j2)

×Sj1,j2(0) − e−Ej2 (q(j1))t
(
Ej2(q

(j1)
)
Cj1,j2(q

(j2)) − u0 · q(j2)Sj1,j2(q
(j2))

))
− 2D0[q(j1) · p(q(j2))]

[(
q

(j2)

1

Ej2(q
(j1))

Bj2(q(j1))
+ q

(j1)

1 t

) (
Ej2(q

(j1))Cj1,j2(0)

− u0 · q(j2)Sj1,j2(0)
) − q

(j2)

1

u0 · q(j2)
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(
Ej2(q

(j1))Sj1,j2(0) + u0 · q(j2)Cj1,j2(0)
)

− e−Ej2 (q(j1))t

((
q

(j2)

1

Ej2(q
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Bj2(q(j1))
+ q
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1 t

) (
Ej2(q

(j1))Cj1,j2(q
(j2))
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1
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(
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(j2))
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(j2))
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+ 2D0tq

(j2)

1 [q(j1) · p(q(j2))] e−Ej2 (q(j1))t

×(
Ej2(q

(j1))Cj1,j2(q
(j2)) − u0 · q(j2)Sj1,j2(q

(j2))
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− u2
0q0
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∑
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e−t/τ
(j1)

D

Bj2(0)

[
Ej2(0)Cj1,j2(0)

− u0 · q(j2)Sj1,j2(0) − e−t/τ
(j2)

D

(
Ej2(0)Cj1,j2(q

(j2)) − u0 · q(j2)Sj1,j2(q
(j2))
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.

The following functions are used in this expression: Sj1,j2(k) = sin
(
u0 · kt + t

/
τ

(j1)
u + α(j1) +

α(j2)
)
, Cj1,j2(k) = cos

(
u0 · kt + t

/
τ

(j1)
u + α(j1) + α(j2)

)
, Bj (k) = (

1
/
τ

(j)

D + 2D0q(j) · k
)2

+(
1
/
τ

(j)
u

)2
, and Ej(k) = 1

/
τ

(j)

D + 2D0q(j) · k.

Appendix A.2. Ensemble average of D11(t)

From equation (13) we can derive for the ensemble mean of D11(t):

D11(t) = D0 − 1

2
∂2
k1

F(k, t)

∣∣∣∣
k=0

= D0 − 1

2
∂2
k1

1

(2π)N

∫ 2π

0
dα(1) · · ·

∫ 2π

0
dα(N)

× l3N
0√

2π
3N

∫
d3q(1) · · ·

∫
d3q(N) e−q(1)2 l20

2 −···−q(N)2 l20
2 F(k, t)
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k=0

.
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Substituting F(k, t) and applying q · p(q) = 0, one easily finds

D11(t) = D0 − 1

2

l3N
0√

2π
3N

∫
d3q(1) · · ·

∫
d3q(N) e− l20

2 (q(1)2
+···+q(N)2

)2
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0
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2
0
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t eD0q(j)2
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τ+iu0·q(j)τ
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= D0 − q0u
2
0

l3
0√

2π
3

∫ t

0
dτ

∫
d3q e− l20

2 q2
p2

1(q)
[
e−2D0q2t eD0q2τ−iu0·qτ − e−D0q2τ−iu0·qτ

]
= D0 + M−(t/τu, 0) − M+(t/τu, 2t/τD)

with

M±(T , a) = q0u0l0(2π)d/2
∫

k

∫ T

0
dτ exp(−(1 + 2a)k2/2) exp(±εk2τ − ik1τ)p2

1(k/l0)

for d = 3 and τu = l0/u0, τD = l2
0

/
D0, ε = τu/τD . The function M±(T , a) is found to be

(see for M±
1 (T ; a, a, a) in [8])

M±(T , a) = ∓q0u0l0

√
π

2

1

(1 + 2a)(d−1)/2
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π

exp(−g2(∓T ))

(
1

g(∓T )
+ 4λ2 f (∓T )

g2(∓T )
− 3

2g3(∓T )
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×
(
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8
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8√
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with λ = ε(1 + 2a)−1/2, f (t) = (1+2a)τD/τu+t/τu√
2(1+2a)+4t/τD

and g(t) = t/τu√
2(1+2a)+4t/τD

.

Appendix B. Transport parameters from the iterative solution of the Langevin equation

Appendix B.1. Dispersion coefficient

The explicit expression for D11(t) given by the iteration of the Langevin equation in
section 4 reads

D11(t) = D0 + 2D0

√
2q0

N
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j

∗
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(B1)

where we used the following definitions and functions:
∑∗

j := ∑N
j=1 for q(j) = 0, τ
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.

Appendix B.2. Ensemble average of D11(t)

The ensemble mean D11(t) of D11(t), equation (22), is given by

D11(t) = D0 +
∫ t

0
dt ′

∫
k

∫
k′
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Using w̃1(k)w̃1(k′) from equation (4), we obtain
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where we apply M±(T , a) from appendix A.2, and the substitutions τ = t ′/τu, ki → ki/ l0.

Appendix B.3. Mean square sample-to-sample fluctuations of D∞
11

Taking the expression for D∞
11 of equation (16), we find for (δD∞

11)
2 using the modified

distribution function P̃ q(q):
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The outer integrations can be performed using Gradshteyn’s tables [15]:
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where we defined the function G(ε) by
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The ensemble mean of D∞
11 is given by
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Appendix C. Ensemble averages for the Gaussian white noise

The expressions in section 4 which are averaged over the white noise consist of functional
integrals. They arise from the derivation of D11(t), equation (22). Using the definitions of
section 2, and D0,ij = D0δij , we obtain from equation (9):

〈
e−i

∫ t

0 dsL(s)ξ1(s)
〉 = ∫
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where L(s) is an arbitrary function. This result can be extended for a vector function L(s),
i.e.

〈
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= exp(−D0k2t).



Transport parameters and self-averaging in heterogeneous media 2571

For L(s) = k�(t − s) + k′�(t ′ − s), we obtain〈
exp
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